Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JCPP Adv ; 3(2): e12162, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37753151

RESUMO

Background: Individuals with 22q11.2 deletion are at considerably increased risk of neurodevelopmental and psychiatric conditions. There have been very few studies investigating how this risk manifests in early childhood and what factors may underlie developmental variability. Insights into this can elucidate transdiagnostic markers of risk that may underlie later development of neuropsychiatric outcomes. Methods: Thirty two children with 22q11.2 Deletion Syndrome (22q11.2DS) (mean age = 4.1 [SD = 1.2] years) and 12 sibling controls (mean age = 4.1 [SD = 1.5] years) underwent in-depth dimensional phenotyping across several developmental domains selected as being potential early indicators of neurodevelopmental and psychiatric liability. Comparisons were conducted of the dimensional developmental phenotype of 22q11.2DS and sibling controls. For autistic traits, both parents and children were phenotyped using the Social Responsiveness Scale. Results: Young children with 22q11.2DS exhibited large impairments (Hedge's g ≥ 0.8) across a range of developmental domains relative to sibling controls, as well as high rates of transdiagnostic neurodevelopmental and psychiatric traits. Cluster analysis revealed a subgroup of children with 22q11.2DS (n = 16; 53%) in whom neurodevelopmental and psychiatric liability was particularly increased and who differed from other children with 22q11.2DS and non-carrier siblings. Exploratory analyses revealed that early motor and sleep impairments indexed liability for neurodevelopmental and psychiatric outcomes. Maternal autism trait scores were predictive of autism traits in children with 22q11.2DS (intraclass correlation coefficients = 0.47, p = 0.046, n = 31). Conclusions: Although psychiatric conditions typically emerge later in adolescence and adulthood in 22q11.2DS, our exploratory study was able to identify a range of early risk indicators. Furthermore, findings indicate the presence of a subgroup who appeared to have increased neurodevelopmental and psychiatric liability. Our findings highlight the scope for future studies of early risk mechanisms and early intervention within this high genetic risk patient group.

2.
Behav Res Methods ; 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37697208

RESUMO

Standard automated perimetry, a psychophysical task performed routinely in eyecare clinics, requires observers to maintain fixation for several minutes at a time in order to measure visual field sensitivity. Detection of visual field damage is confounded by eye movements, making the technique unreliable in poorly attentive individuals and those with pathologically unstable fixation, such as nystagmus. Microperimetry, which utilizes 'partial gaze-contingency' (PGC), aims to counteract eye movements but only corrects for gaze position errors prior to each stimulus onset. Here, we present a novel method of visual field examination in which stimulus position is updated during presentation, which we refer to as 'continuous gaze-contingency' (CGC). In the first part of this study, we present three case examples that demonstrate the ability of CGC to measure the edges of the physiological blind spot in infantile nystagmus with greater accuracy than PGC and standard 'no gaze-contingency' (NoGC), as initial proof-of-concept for the utility of the paradigm in measurements of absolute scotomas in these individuals. The second part of this study focused on healthy observers, in which we demonstrate that CGC has the lowest stimulus positional error (gaze-contingent precision: CGC = ± 0.29°, PGC = ± 0.54°, NoGC = ± 0.81°). CGC test-retest variability was shown to be at least as good as both PGC and NoGC. Overall, CGC is supported as a reliable method of visual field examination in healthy observers. Preliminary findings demonstrate the spatially accurate estimation of visual field thresholds related to retinal structure using CGC in individuals with infantile nystagmus.

3.
Behav Res Methods ; 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507649

RESUMO

A guideline is proposed that comprises the minimum items to be reported in research studies involving an eye tracker and human or non-human primate participant(s). This guideline was developed over a 3-year period using a consensus-based process via an open invitation to the international eye tracking community. This guideline will be reviewed at maximum intervals of 4 years.

4.
Invest Ophthalmol Vis Sci ; 63(2): 28, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195683

RESUMO

Purpose: Children with Down's syndrome (DS) are known to have poorer visual acuity than neurotypical children. One report has shown that children with DS and nystagmus also have poor acuity when compared to typical children with nystagmus. What has not been established is the extent of any acuity deficit due to nystagmus and whether nystagmus affects refractive error within a population with DS. Methods: Clinical records from the Cardiff University Down's Syndrome Vision Research Unit were examined retrospectively. Binocular visual acuity and refraction data were available for 50 children who had DS and nystagmus and 176 children who had DS but no nystagmus. Data were compared between the two groups and with published data for neurotypical children with nystagmus. Results: The study confirms the deficit in acuity in DS, compared to neurotypical children, of approximately 0.2 logMAR and shows a deficit attributable to nystagmus of a further 0.2 logMAR beyond the first year of life. Children with both DS and nystagmus clearly have a significant additional impairment. Children with DS have a wide range of refractive errors, but nystagmus increases the likelihood of myopia. Prevalence and axis direction of astigmatism, on the other hand, appear unaffected by nystagmus. Conclusions: Nystagmus confers an additional visual impairment on children with DS and must be recognized as such by families and educators. Children with both DS and nystagmus clearly need targeted support.


Assuntos
Síndrome de Down/fisiopatologia , Nistagmo Patológico/fisiopatologia , Erros de Refração/fisiopatologia , Transtornos da Visão/fisiopatologia , Acuidade Visual/fisiologia , Astigmatismo/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Nistagmo Patológico/diagnóstico , Refração Ocular/fisiologia , Estudos Retrospectivos , Testes Visuais , Visão Binocular/fisiologia
5.
Chaos ; 31(1): 013121, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33754760

RESUMO

Huntington's disease (HD), a genetically determined neurodegenerative disease, is positively correlated with eye movement abnormalities in decision making. The antisaccade conflict paradigm has been widely used to study response inhibition in eye movements, and reliable performance deficits in HD subjects have been observed, including a greater number and timing of direction errors. We recorded the error rates and response latencies of early HD patients and healthy age-matched controls performing the mirror antisaccade task. HD participants displayed slower and more variable antisaccade latencies and increased error rates relative to healthy controls. A competitive accumulator-to-threshold neural model was then employed to quantitatively simulate the controls' and patients' reaction latencies and error rates and uncover the mechanisms giving rise to the observed HD antisaccade deficits. Our simulations showed that (1) a more gradual and noisy rate of accumulation of evidence by HD patients is responsible for the observed prolonged and more variable antisaccade latencies in early HD; (2) the confidence level of early HD patients making a decision is unaffected by the disease; and (3) the antisaccade performance of healthy controls and early HD patients is the end product of a neural lateral competition (inhibition) between a correct and an erroneous decision process, and not the end product of a third top-down stop signal suppressing the erroneous decision process as many have speculated.


Assuntos
Doença de Huntington , Doenças Neurodegenerativas , Humanos , Tempo de Reação , Movimentos Sacádicos
6.
Invest Ophthalmol Vis Sci ; 61(6): 15, 2020 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-32526031

RESUMO

Purpose: Infantile nystagmus (IN) presents with continuous, predominantly horizontal eye oscillations. It remains controversial whether those with IN have normal horizontal pursuit, while vertical pursuit has rarely been studied. We examined whether there are pursuit deficits associated with IN by investigating the effect of target direction, velocity, and amplitude. Methods: Twelve adults with idiopathic IN performed a pursuit task, a 0.4° dot moved either horizontally or vertically at 8 or 16°/s, through amplitudes of 8°, 16°, or 32°. Accuracy and precision errors were computed as bivariate probability density functions of target-relative eye velocities. Results: Eye velocity was less precise along the horizontal axis during both horizontal and vertical pursuit, reflecting the primary axis of the eye oscillation. Mean accuracy error along the target trajectory during vertical pursuit was just as impaired as during horizontal pursuit. There was a greater error in accuracy along the target trajectory for 16°/s targets than 8°/s. Finally, targets that oscillated at 2.0 Hz had a greater error in accuracy along the target trajectory than frequencies of 1.0 Hz or 0.5 Hz. When studied using the same experimental protocol, pursuit performance for typical observers was always better. Conclusions: These findings strongly support our hypothesis of severe deficits in pursuit accuracy in observers with IN for horizontally and vertically moving targets, as well as for targets that move at higher speeds or oscillate more quickly. Overall, IN pursuit impairment appears to have previously been underestimated, highlighting a need for further quantitative studies of dynamic visual function in those with IN.


Assuntos
Doenças Genéticas Ligadas ao Cromossomo X/fisiopatologia , Nistagmo Congênito/fisiopatologia , Acompanhamento Ocular Uniforme/fisiologia , Adolescente , Adulto , Idoso , Movimentos Oculares/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Percepção de Movimento , Oftalmoscopia , Reprodutibilidade dos Testes , Microscopia com Lâmpada de Fenda , Tomografia de Coerência Óptica , Adulto Jovem
7.
Brain Struct Funct ; 225(1): 403-425, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31875262

RESUMO

The motor outflow for the pupillary light reflex originates in the preganglionic motoneuron subdivision of the Edinger-Westphal nucleus (EWpg), which also mediates lens accommodation. Despite their importance for vision, the morphology, ultrastructure and luminance-related inputs of these motoneurons have not been fully described in primates. In macaque monkeys, we labeled EWpg motoneurons from ciliary ganglion and orbital injections. Both approaches indicated preganglionic motoneurons occupy an EWpg organized as a unitary, ipsilateral cell column. When tracers were placed in the pretectal complex, labeled terminals targeted the ipsilateral EWpg and reached contralateral EWpg by crossing both above and below the cerebral aqueduct. They also terminated in the lateral visceral column, a ventrolateral periaqueductal gray region containing neurons projecting to the contralateral pretectum. Combining olivary pretectal and ciliary ganglion injections to determine whether a direct pupillary light reflex projection is present revealed a labeled motoneuron subpopulation that displayed close associations with labeled pretectal terminal boutons. Ultrastructurally, this subpopulation received synaptic contacts from labeled pretectal terminals that contained numerous clear spherical vesicles, suggesting excitation, and scattered dense-core vesicles, suggesting peptidergic co-transmitters. A variety of axon terminal classes, some of which may serve the near response, synapsed on preganglionic motoneurons. Quantitative analysis indicated that pupillary motoneurons receive more inhibitory inputs than lens motoneurons. To summarize, the pupillary light reflex circuit utilizes a monosynaptic, excitatory, bilateral pretectal projection to a distinct subpopulation of EWpg motoneurons. Furthermore, the interconnections between the lateral visceral column and olivary pretectal nucleus may provide pretectal cells with bilateral retinal fields.


Assuntos
Núcleo de Edinger-Westphal/ultraestrutura , Neurônios Motores/ultraestrutura , Reflexo Pupilar/fisiologia , Sinapses/ultraestrutura , Animais , Feminino , Macaca fascicularis , Macaca mulatta , Masculino , Vias Neurais/ultraestrutura , Técnicas de Rastreamento Neuroanatômico , Substância Cinzenta Periaquedutal/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Área Pré-Tectal/ultraestrutura , Membranas Sinápticas/ultraestrutura , Vesículas Sinápticas/ultraestrutura
8.
Transl Vis Sci Technol ; 8(5): 7, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31588372

RESUMO

PURPOSE: Small moving targets are followed by pursuit eye movements, with success ubiquitously defined by gain. Gain quantifies accuracy, rather than precision, and only for eye movements along the target trajectory. Analogous to previous studies of fixation, we analyzed pursuit performance in two dimensions as a function of target direction, velocity, and amplitude. As a subsidiary experiment, we compared pursuit performance against that of fixation. METHODS: Eye position was recorded from 15 observers during pursuit. The target was a 0.4° dot that moved across a large screen at 8°/s or 16°/s, either horizontally or vertically, through peak-to-peak amplitudes of 8°, 16°, or 32°. Two-dimensional eye velocity was expressed relative to the target, and a bivariate probability density function computed to obtain accuracy and precision. As a comparison, identical metrics were derived from fixation data. RESULTS: For all target directions, eye velocity was less precise along the target trajectory. Eye velocities orthogonal to the target trajectory were more accurate during vertical pursuit than horizontal. Pursuit accuracy and precision along and orthogonal to the target trajectory decreased at the higher target velocity. Accuracy along the target trajectory decreased with smaller target amplitudes. CONCLUSIONS: Orthogonal to the target trajectory, pursuit was inaccurate and imprecise. Compared to fixation, pursuit was less precise and less accurate even when following the stimulus that gave the best performance. TRANSLATIONAL RELEVANCE: This analytical approach may help the detection of subtle deficits in slow phase eye movements that could be used as biomarkers for disease progression and/or treatment.

9.
Transl Vis Sci Technol ; 8(5): 8, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31588373

RESUMO

PURPOSE: It could be argued that current studies investigating smooth pursuit development in children do not provide an optimal measure of smooth pursuit characteristics, given that a significant number have failed to adjust their setup and procedures to the child population. This study aimed to characterize smooth pursuit in children using child-friendly stimuli and procedures. METHODS: Eye movements were recorded in 169 children (4-11 years) and 10 adults, while a customized, animated stimulus was presented moving horizontally and vertically at 6°/s and 12°/s. Eye movement recordings from 43 children with delayed reading, two with nystagmus, two with strabismus, and two with unsuccessful calibration were excluded from the analysis. Velocity gain, proportion of smooth pursuit, and the number and amplitude of saccades during smooth pursuit were calculated for the remaining participants. Median and quartiles were calculated for each age group and pursuit condition. ANOVA was used to investigate the effect of age on smooth pursuit parameters. RESULTS: Differences across ages were found in velocity gain (6°/s P < 0.01; 12°/s P < 0.05), as well as the number (12°/s P < 0.05) and amplitude of saccades (12°/s P < 0.05), for horizontal smooth pursuit. Post hoc tests showed that these parameters were different between children aged 7 or younger and adults. No significant differences were found across ages in any smooth pursuit parameter for the vertical direction (P > 0.05). CONCLUSIONS: Using child-friendly methods, children over the age of 7 to 8 years demonstrated adultlike smooth pursuit. TRANSLATIONAL RELEVANCE: Child-friendly procedures are critical for appropriately characterizing smooth pursuit eye movements in children.

11.
Behav Res Methods ; 51(5): 2074-2084, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30875024

RESUMO

Infantile nystagmus (IN) describes a regular, repetitive movement of the eyes. A characteristic feature of each cycle of the IN eye movement waveform is a period in which the eyes are moving at minimal velocity. This so-called "foveation" period has long been considered the basis for the best vision in individuals with IN. In recent years, the technology for measuring eye movements has improved considerably, but there remains the challenge of calibrating the direction of gaze in tracking systems when the eyes are continuously moving. Identifying portions of the nystagmus waveform suitable for calibration typically involves time-consuming manual selection of the foveation periods from the eye trace. Without an accurate calibration, the exact parameters of the waveform cannot be determined. In this study, we present an automated method for segmenting IN waveforms with the purpose of determining the foveation positions to be used for calibration of an eye tracker. On average, the "point of regard" was found to be within 0.21° of that determined by hand-marking by an expert observer. This method enables rapid clinical quantification of waveforms and the possibility of gaze-contingent research paradigms being performed with this patient group.


Assuntos
Calibragem , Medições dos Movimentos Oculares , Automação , Movimentos Oculares , Humanos , Nistagmo Patológico , Acuidade Visual
12.
Ophthalmic Physiol Opt ; 37(4): 531-541, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28656674

RESUMO

PURPOSE: Previous studies have reported that eye movements differ between good/average and poor readers. However, these studies have been limited to investigating eye movements during reading related tasks, and thus, the differences found could arise from deficits in higher cognitive processes involved in reading rather than oculomotor performance. The purpose of the study is to determine the extent to which eye movements in children with delayed reading skills are different to those obtained from children with good/average reading skills in non-reading related tasks. METHODS: After a screening optometric assessment, eye movement recordings were obtained from 120 children without delayed reading skills and 43 children with delayed reading skills (4 to 11 years) using a Tobii TX300 eye tracker. Cartoon characters were presented horizontally from -20° to +20° in steps of 5° to study saccades. An animated stimulus in the centre of the screen was presented for 8 seconds to study fixation stability. Saccadic main sequences, and the number and amplitude of the saccades during fixation were obtained for each participant. Children with delayed reading skills (n = 43) were unmasked after data collection was completed. Medians and quartiles were calculated for each eye movement parameter for children without (n = 120) and with (n = 43) delayed reading skills. RESULTS: Independent t-tests with Bonferroni correction showed no significant differences in any of the saccadic main sequence parameters (Slope, Intercept, A, n and Q ratio) between children without and with delayed reading (p > 0.01). Similarly, no significant differences were found in the number of saccades and their amplitude during the fixation task between the two groups (p > 0.05). Further, none of the gross optometric parameters assessed (visual acuity, refractive error, ocular alignment, convergence, stereopsis and accommodation accuracy) were found to be associated with delayed reading skills (p > 0.05). CONCLUSIONS: Eye movements in children with delayed reading skills are quantitatively similar to those found in children without delayed reading skills. These findings suggest that, in these children, delayed reading skills are not associated with eye movements and further question interventions targeted at improving eye movement control.


Assuntos
Acomodação Ocular , Percepção de Profundidade/fisiologia , Fixação Ocular/fisiologia , Leitura , Erros de Refração/fisiopatologia , Movimentos Sacádicos/fisiologia , Visão Binocular/fisiologia , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Acuidade Visual
13.
Optom Vis Sci ; 94(7): 760-769, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28609416

RESUMO

PURPOSE: This study presents a two-degree customized animated stimulus developed to evaluate smooth pursuit in children and investigates the effect of its predetermined characteristics (stimulus type and size) in an adult population. Then, the animated stimulus is used to evaluate the impact of different pursuit motion paradigms in children. METHODS: To study the effect of animating a stimulus, eye movement recordings were obtained from 20 young adults while the customized animated stimulus and a standard dot stimulus were presented moving horizontally at a constant velocity. To study the effect of using a larger stimulus size, eye movement recordings were obtained from 10 young adults while presenting a standard dot stimulus of different size (1° and 2°) moving horizontally at a constant velocity. Finally, eye movement recordings were obtained from 12 children while the 2° customized animated stimulus was presented after three different smooth pursuit motion paradigms. Performance parameters, including gains and number of saccades, were calculated for each stimulus condition. RESULTS: The animated stimulus produced in young adults significantly higher velocity gain (mean: 0.93; 95% CI: 0.90-0.96; P = .014), position gain (0.93; 0.85-1; P = .025), proportion of smooth pursuit (0.94; 0.91-0.96, P = .002), and fewer saccades (5.30; 3.64-6.96, P = .008) than a standard dot (velocity gain: 0.87; 0.82-0.92; position gain: 0.82; 0.72-0.92; proportion smooth pursuit: 0.87; 0.83-0.90; number of saccades: 7.75; 5.30-10.46). In contrast, changing the size of a standard dot stimulus from 1° to 2° did not have an effect on smooth pursuit in young adults (P > .05). Finally, smooth pursuit performance did not significantly differ in children for the different motion paradigms when using the animated stimulus (P > .05). CONCLUSIONS: Attention-grabbing and more dynamic stimuli, such as the developed animated stimulus, might potentially be useful for eye movement research. Finally, with such stimuli, children perform equally well irrespective of the motion paradigm used.


Assuntos
Movimentos Oculares/fisiologia , Percepção de Movimento/fisiologia , Acompanhamento Ocular Uniforme/fisiologia , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Generalização do Estímulo , Humanos , Masculino , Movimentos Sacádicos , Adulto Jovem
14.
Invest Ophthalmol Vis Sci ; 58(1): 642-650, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28129427

RESUMO

Purpose: Most individuals with infantile nystagmus (IN) have an idiosyncratic gaze angle at which their nystagmus intensity is minimized. Some adopt an abnormal head posture to use this "null zone," and it has therefore long been assumed that this provides people with nystagmus with improved visual acuity (VA). However, recent studies suggest that improving the nystagmus waveform could have little, if any, influence on VA; that is, VA is fundamentally limited in IN. Here, we examined the impact of the null zone on VA. Methods: Visual acuity was measured in eight adults with IN using a psychophysical staircase procedure with reversals at three horizontal gaze angles, including the null zone. Results: As expected, changes in gaze angle affected nystagmus amplitude, frequency, foveation duration, and variability of intercycle foveation position. Across participants, each parameter (except frequency) was significantly correlated with VA. Within any given individual, there was a small but significant improvement in VA (0.08 logMAR) at the null zone as compared with the other gaze angles tested. Despite this, no change in any of the nystagmus waveform parameters was significantly associated with changes in VA within individuals. Conclusions: A strong relationship between VA and nystagmus characteristics exists between individuals with IN. Although significant, the improvement in VA observed within individuals at the null zone is much smaller than might be expected from the occasionally large variations in intensity and foveation dynamics (and anecdotal patient reports of improved vision), suggesting that improvement of other aspects of visual performance may also encourage use of the null zone.


Assuntos
Adaptação Ocular/fisiologia , Movimentos Oculares/fisiologia , Nistagmo Congênito/fisiopatologia , Músculos Oculomotores/fisiopatologia , Acuidade Visual/fisiologia , Adulto , Técnicas de Diagnóstico Oftalmológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nistagmo Congênito/diagnóstico , Músculos Oculomotores/diagnóstico por imagem , Postura , Adulto Jovem
15.
Clin Optom (Auckl) ; 9: 123-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-30214368

RESUMO

Infantile nystagmus (IN), previously known as congenital nystagmus, is an involuntary to-and-fro movement of the eyes that persists throughout life. IN is one of three types of early-onset nystagmus that begin in infancy, alongside fusion maldevelopment nystagmus syndrome and spasmus nutans syndrome. Optometrists may also encounter patients with acquired nystagmus. The features of IN overlap largely with those of fusion maldevelopment nystagmus syndrome, spasmus nutans syndrome, and acquired nystagmus, yet the management for each subtype is different. Therefore, the optometrist's role is to accurately discern IN from other forms of nystagmus and to manage accordingly. As IN is a lifelong condition, its presence not only affects the visual function of the individual but also their quality of life, both socially and psychologically. In this report, we focus on the approaches that involve optometrists in the investigation and management of patients with IN. Management includes the prescription of optical treatments, low-vision rehabilitation, and other interventions such as encouraging the use of the null zone and referral to support groups. Other treatments available via ophthalmologists are also briefly discussed in the article.

16.
J Chem Neuroanat ; 78: 65-86, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27562515

RESUMO

The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.


Assuntos
Gânglios da Base/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Animais , Columbidae/metabolismo , Corpo Estriado/metabolismo , Núcleo Accumbens/metabolismo
17.
Psychophysiology ; 53(8): 1217-23, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27172997

RESUMO

The pupil has been shown to be sensitive to the emotional content of stimuli. We examined this phenomenon by comparing fearful and neutral images carefully matched in the domains of luminance, image contrast, image color, and complexity of content. The pupil was more dilated after viewing affective pictures, and this effect was (a) shown to be independent of the presentation time of the images (from 100-3,000 ms), (b) not diminished by repeated presentations of the images, and (c) not affected by actively naming the emotion of the stimuli in comparison to passive viewing. Our results show that the emotional modulation of the pupil is present over a range of variables that typically vary from study to study (image duration, number of trials, free viewing vs. task), and encourages the use of pupillometry as a measure of emotional processing in populations where alternative techniques may not be appropriate.


Assuntos
Afeto/fisiologia , Emoções/fisiologia , Habituação Psicofisiológica , Pupila/fisiologia , Adulto , Medo/fisiologia , Feminino , Humanos , Masculino , Estimulação Luminosa , Percepção Visual/fisiologia , Adulto Jovem
18.
Autism ; 20(8): 927-937, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26862085

RESUMO

A number of authors have suggested that attention control may be a suitable target for cognitive training in children with autism spectrum disorder. This study provided the first evidence of the feasibility of such training using a battery of tasks intended to target visual attentional control in children with autism spectrum disorder within school-based settings. Twenty-seven children were recruited and randomly assigned to either training or an active control group. Of these, 19 completed the initial assessment, and 17 (9 trained and 8 control) completed all subsequent training sessions. Training of 120 min was administered per participant, spread over six sessions (on average). Compliance with the training tasks was generally high, and evidence of within-task training improvements was found. A number of untrained tasks to assess transfer of training effects were administered pre- and post-training. Changes in the trained group were assessed relative to an active control group. Following training, significant and selective changes in visual sustained attention were observed. Trend training effects were also noted on disengaging visual attention, but no convincing evidence of transfer was found to non-trained assessments of saccadic reaction time and anticipatory looking. Directions for future development and refinement of these new training techniques are discussed.


Assuntos
Atenção/fisiologia , Transtorno Autístico/fisiopatologia , Transtorno Autístico/terapia , Terapia Cognitivo-Comportamental/métodos , Fixação Ocular/fisiologia , Criança , Pré-Escolar , Estudos de Viabilidade , Feminino , Humanos , Masculino , Tempo de Reação/fisiologia , Resultado do Tratamento , País de Gales
19.
Front Behav Neurosci ; 9: 256, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528150

RESUMO

Damage involving the anterior thalamic and adjacent rostral thalamic nuclei may result in a severe anterograde amnesia, similar to the amnesia resulting from damage to the hippocampal formation. Little is known, however, about the information represented in these nuclei. To redress this deficit, we recorded units in three rostral thalamic nuclei in freely-moving rats [the parataenial nucleus (PT), the anteromedial nucleus (AM) and nucleus reuniens NRe]. We found units in these nuclei possessing previously unsuspected spatial properties. The various cell types show clear similarities to place cells, head direction cells, and perimeter/border cells described in hippocampal and parahippocampal regions. Based on their connectivity, it had been predicted that the anterior thalamic nuclei process information with high spatial and temporal resolution while the midline nuclei have more diffuse roles in attention and arousal. Our current findings strongly support the first prediction but directly challenge or substantially moderate the second prediction. The rostral thalamic spatial cells described here may reflect direct hippocampal/parahippocampal inputs, a striking finding of itself, given the relative lack of place cells in other sites receiving direct hippocampal formation inputs. Alternatively, they may provide elemental thalamic spatial inputs to assist hippocampal spatial computations. Finally, they could represent a parallel spatial system in the brain.

20.
Invest Ophthalmol Vis Sci ; 56(9): 5094-101, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26241396

RESUMO

PURPOSE: Treatments for infantile nystagmus (IN) sometimes elicit subjective reports of improved visual function, yet quantifiable improvements in visual acuity, if any, are often negligible. One possibility is that these subjective "improvements" may relate to temporal, rather than spatial, visual function. This study aimed to ascertain the extent to which "time to see" might be increased in nystagmats, as compared to normally sighted controls. By assessing both eye movement and response time data, it was possible to determine whether delays in "time to see" were due solely to the eye movements, or to an underlying deficit in visual processing. METHODS: The time taken to respond to the orientation of centrally and peripherally presented gratings was measured in subjects with IN and normally sighted controls (both groups: n = 11). For each vertically displaced grating, the time until the target-acquiring saccade was determined, as was the time from the saccade until the subject's response. RESULTS: Nystagmats took approximately 60 ms longer than controls to execute target-acquiring saccades to vertically displaced targets (P = 0.010). However, the time from the end of the saccade until subjects responded was not significantly different between groups (P = 0.37). Despite this, nystagmats took longer to respond to gratings presented at fixation. CONCLUSIONS: Individuals with IN took longer to direct their gaze toward objects of interest. However, once a target was foveated, the time taken to process visual information and respond did not appear to differ from that of control subjects. Therefore, conscious visual processing in IN is not slow.


Assuntos
Nistagmo Congênito/fisiopatologia , Orientação , Tempo de Reação/fisiologia , Movimentos Sacádicos/fisiologia , Acuidade Visual , Percepção Visual/fisiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...